Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes
نویسندگان
چکیده
During the recent years, a significant amount of research has been performed on single-walled carbon nanotubes (SWCNTs) as a channel material in thin-film transistors (Pham et al. IEEE Trans Nanotechnol 11:44-50, 2012). This has prompted the application of advanced characterization techniques based on combined atomic force microscopy (AFM) and Raman spectroscopy studies (Mureau et al. Electrophoresis 29:2266-2271, 2008). In this context, we use confocal Raman microscopy and current sensing atomic force microscopy (CS-AFM) to study phonons and the electronic transport in semiconducting SWCNTs, which were aligned between palladium electrodes using dielectrophoresis (Kuzyk Electrophoresis 32:2307-2313, 2011). Raman imaging was performed in the region around the electrodes on the suspended CNTs using several laser excitation wavelengths. Analysis of the G+/G- splitting in the Raman spectra (Sgobba and Guldi Chem Soc Rev 38:165-184, 2009) shows CNT diameters of 2.5 ± 0.3 nm. Neither surface modification nor increase in defect density or stress at the CNT-electrode contact could be detected, but rather a shift in G+ and G- peak positions in regions with high CNT density between the electrodes. Simultaneous topographical and electrical characterization of the CNT transistor by CS-AFM confirms the presence of CNT bundles having a stable electrical contact with the transistor electrodes. For a similar load force, reproducible current-voltage (I/V) curves for the same CNT regions verify the stability of the electrical contact between the nanotube and the electrodes as well as the nanotube and the AFM tip over different experimental sessions using different AFM tips. Strong variations observed in the I/V response at different regions of the CNT transistor are discussed.
منابع مشابه
Cvd Growth and Heat Transfer of Carbon Nanotubes
Carbon nanotubes and graphene are extra-ordinal material with remarkable electrical, optical, mechanical and thermal properties. Films of vertically aligned (VA-) SWNTs and horizontally aligned (HA-) SWNTs are synthesized on quartz and crystal quartz substrates, respectively. These aligned film should inherit the remarkable properties of SWNTs. The recent progress in growth control and characte...
متن کاملGrowth of horizontally aligned single-walled carbon nanotubes on anisotropically etched silicon substrate.
Directional controllability of single-walled carbon nanotubes (SWNTs) is an important issue for future nanoelectronics applications. For direct integration of carbon nanotubes with modern electronics, aligned growth of carbon nanotubes on SiO(2)/Si is desirable. We developed a new method to horizontally align SWNTs directly on SiO(2)/Si substrate by creating trenches on Si(100) through anisotro...
متن کاملSelective removal of metallic single-walled carbon nanotubes in full length by organic film-assisted electrical breakdown.
An organic film-assisted electrical breakdown technique is proposed to selectively remove metallic (m-) single-walled carbon nanotubes (SWNTs) in full length towards creation of pure semiconducting SWNT arrays which are available for the large-scale fabrication of field effect transistors (FETs). The electrical breakdown of horizontally aligned SWNT arrays embedded in organic films resulted in ...
متن کاملPreferential growth of short aligned, metallic-rich single-walled carbon nanotubes from perpendicular layered double hydroxide film.
Direct bulk growth of single-walled carbon nanotubes (SWCNTs) with required properties, such as diameter, length, and chirality, is the first step to realize their advanced applications in electrical and optical devices, transparent conductive films, and high-performance field-effect transistors. Preferential growth of short aligned, metallic-rich SWCNTs is a great challenge to the carbon nanot...
متن کاملField emission and anode etching during formation of length-controlled nanogaps in electrical breakdown of horizontally aligned single-walled carbon nanotubes.
We observe field emission between nanogaps and voltage-driven gap extension of single-walled carbon nanotubes (SWNTs) on substrates during the electrical breakdown process. Experimental results show that the gap size is dependent on the applied voltage and humidity, which indicates high controllability of the gap size by appropriate adjustment of these parameters in accordance with the applicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012